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where xq is determined from equation (6) at z a = - z  1 
and equals xa2 + zt tan 0; the value A o = Ao(T) is deter- 
mined in equations (A.5) and (9). 

In calculating the amplitudes of fields E~ and E~, ~ we 
omitted the time dependence. If the phase difference 
arises when a phase object is put into the path of one of 
the beams, then fields E~ and El, ~ reach the point rA2 
at different moments of time r and Az. In this case 
an additional phase difference O(~r) = ogar appears. 
Let us express 09 through xq, then: 

O(Ar) = dgAr(1 + xq cos 30/z 3 sin 0), (A. 19) 

where 69 is the mean value of the cyclic frequency of 
waves reaching the observation point within the 
variation range I xql <~ A o. 
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A b s t r a c t  

The idea of Anzenhofer & Hoppe [Phys. Verh. (1962), 
13, 119] that all the Fourier coefficients of the function 
p(r).p(r + u) are zero if the Patterson function is zero 
at vector point u is first developed; it is shown that the 
three-phase cosine and sine invariants may be derived 
jointly by solving two sets of linear equations. A least- 
squares method exploiting the entire Patterson function 
is then presented; this may allow the three-phase cosine 
and sine invariants to be determined and/or refined. 
As expected, the low-valued Patterson regions con- 
tribute most to the least-squares procedure. 

0567-7394/79/010213-08501.00 

I n t r o d u c t i o n  

Anzenhofer & Hoppe (1962) first pointed out that, if the 
Patterson function P(u) of any structure is zero at 
some vector point u, exact equations among structure 
factors may be derived. In fact, the shift-product 
function p(r).p(r + u) must be zero for any r; conse- 
quently, all its Fourier components must vanish, thus 
producing a set of linear equations among products of 
structure factor pairs (Anzenhofer & Hoppe, 1962; 
Hoppe, 1962, 1963). More recently, Dideberg (1977) 
also discussed applications of the same idea. It is 
interesting to recall that Main & Woolfson (1962, 1963) 
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214 THREE-PHASE INVARIANTS FROM THE PATTERSON FUNCTION 

proposed a different method which also makes use of 
the zero points in the Patterson function (the 'M- 
function' method). Unlike Anzenhofer & Hoppe, they 
exploit the information that, if P(u) is zero and the 
structure is centrosymmetric, no electron density can 
exist at +u/2 from any inversion centre. As a conse- 
quence, they obtain exact linear equations among the 
structure factors. 

In the first part of the present paper we develop 
Anzenhofer & Hoppe's idea showing that the three- 
phase cosine and sine invariants may be derived from 
two sets of linear equations obtained from the vector 
points with P(u) = 0. In the second part, a general 
least-squares procedure exploiting the knowledge of the 
Patterson function at every vector point is discussed; 
this may allow the three-phase cosine and sine in- 
variants to be determined and/or refined. Since no 
practical application of these methods has been carried 
out as yet, this is to be regarded as a preliminary 
theoretical investigation. 

Linear equations among cosine and sine invariants 

Let P(u) be zero. This means that 

f p(r).p(r + u)d3r = 0. (1) 
v 

Adding together the pairs of terms with (K ----K, K = 
H -- g,) and remembering that there may be only one 
such term for K = H/2, the above equation reduces to 

V.~'-n(u) = ~ [2 - -6 (H- -2K) ]FKFn_K 
K 

x cos [2zffH -- 2K).u/2] -- 0, (5) 
where ~ stands for the Kronecker delta, and the bar 
over the summation symbol means that the terms with 
FxFn_ K and Fn_~F K are taken once only. 

Unlike Anzenhofer & Hoppe (1962), we do not deem 
it useful to start from a shift-product function of the 
type 

aim(r/u) = p(r). t p ( r -  u) + p(r + u)]. (6) 

The reason is that, as it is easy to show, the Fourier 
components of the above function are given by 

~ " H  (U) .  2 cos zrH. u, (7) 

and they may vanish when cos ~zH. u is zero, indepen- 
dently of the value of J - n  (u), thus introducing spurious 
information. 

It is now convenient to multiply equation (5) by 
exp (-i(0n), with the substitution 

F n = IFnl exp(icpn), (8) 

so that, after separating the real and the imaginary 
components equation (5) becomes 

Since p(r) is everywhere either positive or zero, the 
same applies to the shift-product function 

1 p°')(r/u) = p(r - -  ½u).p(r + ~u), (2) 

which is zero for every r in view of equation (1). [A 
--½u origin shift has been applied to the p's of equation 
(1) for symmetry reasons.] A vanishing function has 
vanishing Fourier components, so that, remembering 

1 
p(r) = --~ Z Fn exp (2zciH. r), 

H 

we may write 

(3) 

3"n  (u) = f p0')(r/u) exp (--2n'/H. r) dar 

v 

V2 FKF L exp [2zti(K + L -  H). r] 

x exp [2~zi(--K + L) u/2] / d 3 r 
) 

1 
=---V Z FKFn_Kexp[2rci(H-- 2K).u/2] = 0 .  (4) 

K 

[ 2 -  ~ ( H -  2K)]IFK Fn_KI cos [2z~(H- 2K).u/2] 
K 

× cos (-(oH + (oK + m - x )  = 0, (9a) 

[ 2 -  6 ( n -  2K)]1FKF._Ktcos [2z~(a -- 2K). u/2] 
K 

× sin (--q~a + (oK + ~Pn-K) = 0, (9b) 

giving a set of linear equations in the three-phase cosine 
and sine invariants. It is easy to see that equation (9a) 
reduces to V.P(u) = 0 for H = 0, as expected. It 
should be pointed out that at least the term with K = 0 
has a known value in equation (9a), i.e. 

21FHF01 cos (zrH.u), 

which is different from zero in general. (Of course, 
only the case IFHI ~ 0 will be considered, since ~Pn is 
undetermined otherwise.) Consequently, equation (9a) 
represents a linear inhomogeneous system where the 
cosine invariants represent the unknowns. The system 
given by equation (9b) is also linear although homo- 
geneous; it has a different set of unknowns (the sine 
invariants), but it is important to remark that the 
matrix of the coefficients of the unknowns is the same 
as for system (9a). 

It is apparent that the above result may be utilized 
in several ways. Leaving aside at present the question 
of how close to zero the Patterson function must be in 
order for the above equations to have practical 
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validity, let us analyse a possible application of equa- 
tions (9). 

For a given u there are as many equations of either 
type (a) or (b) as there are observed reflections, say N. 
Unfortunately, the total number of three-phase in- 
variants is of the order N 2. However, let us suppose 
there are X vectors within the unit cell for which 
P(u) -- 0, sufficiently distinct from one another for the 
corresponding equations to be not virtually identical. 
Further, let us assume that X is equal to, or larger 
than, the number of (non-zero) three-phase invariants 
that a given reflection with a large IFHI contributes to. 
Then for that particular H it is possible to create at 
least as many different equations of either type (9) as 
there are Sayre triples with IFKFH-KI =/= O. Let us 
suppose that the number of these distinct triples is 
~¢"(< ~ by assumption). 

In the centric case, all the sine invariants must be 
zero and it is possible, at least in principle, to select ~A/-' 
vector points with P(u) -- 0 so that the determinant of 
the coefficient matrix is (sufficiently) different from 
zero; under this assumption, the cosine invariants may 
be directly calculated with the usual methods of linear 
algebra. It is worth pointing out that the above- 
mentioned matrix may be written as a product of two 
matrices, one of which does not depend on the observed 
amplitudes. In fact, let us first write equations (9) in the 
following form 

A n ' e l l  = PH; AH.S H -- 0, (10) 

where Ah is a square matrix while ca, sn and PH are 
column vectors, all of order f ' ,  with 

An(j , i )  = [2 - J(H -- 2Ki)] IFK, Fn_KI 

x cos [2zc(H -- 2Ki). uj/2], (1 la) 

CH(j) = cos (--~On + ~0K, + (PH--K), (1 lb) 

SH(j) = sin (--~0n + ~K, + tPn--K), (11 C) 

PH(J) = --2 IFH F01 cos (ztH. Uj). (1 ld) 

It is easy to see that An may be factorized as 

AH = am. l i b  (12 )  

where 

an(j , i )  = cos [27t(H -- 2Ki).uj/2], (12') 

t n  = Diag {[2 -- J(H - 2Ki)]. IFK .FH_K I }, 

SO that Det An = Det an. Det ~n, and the determinant 
of un does not depend on the amplitudes. 

In the acentric case, the above procedure cannot be 
followed, rigorously speaking. In fact, the sine in- 
variants are not zero, in general, and any selection of 
J//" vector points with P(u) = 0 must imply Det An = 0 
[see equations (10)], otherwise sa = 0 is the only 
possible solution. Incidentally, from the above it turns 

out that Det An - 0 means Det an -- 0, i.e. annihilation 
of the determinant only depends on the scalar products 
(H --  2K/).uy/2, while the observed amplitudes are 
unimportant. 

This difficulty may be overcome if it is possible to 
select the ~A"' vector points in such a way that the 
rank of the An is Jr"' -- 1, i.e. if there is at least a 
coefficient matrix pertaining to ~.¢" -- 1 invariants 
whose determinant is (sufficiently) different from zero. 
In this case both systems can be solved in terms of one 
cosine and sine invariant and proper use of the identity 
cos 2 x + sin2x --- 1 may lead to a full solution of the 
problem. 

By changing H to H',  other systems of equations (9) 
may be obtained, and more cosine and sine invariants 
derived. Of course, in general any of them should be 
obtained at least three times, namely solving each of the 
systems corresponding to H, K and H - K. The agree- 
ment among the three values should represent an 
internal consistency check. The same consideration 
applies to any different choice of the zero-values 
Patterson vectors. 

A general least-squares approach 

We shall consider first the general properties of the 
shift-product function pO')(r/u) [see equation (2)] for 
any u [i.e. P(u) 4 : 0  in general] under the following 
assumptions: (i) the electron density of the general 
qth atom of the real structure has the following 
Gaussian shape: 

1 r 2 

pq(r) = (27/:0"2) 3/2 Zqexp 2o 2 ; 

fpq(r) d V = Zq, (l  3) 

where r is the distance from the centre and tr is the 
same for all the atoms; (ii) there are many atoms in the 
unit cell; (iii) the electron numbers (i.e. Zq) of the large 
majority of the atoms differ only slightly. 

As a consequence, the electron density p(x,y,z) of the 
real structure may be expressed as 

no 
p(x,y,z) = ~ (2n02) -3/2 Zq exp { - - [ ( x -  xq) 2 

q=l 

+ (y_yq)2 + (z-zq)2l/2a2}, (14) 

where (x,y,z) and (xq, yq, zq) are the respective co- 
ordinates of the general point and of the general atomic 
centre, referred to orthogonal axes for simplicity, 
although with no loss of generality. Since the Gaussian 
distribution [equation (13)] does not rigorously vanish 
anywhere, strictly speaking the above sum must be ex- 
tended to all the n o atoms within the crystal. Con-  



216 THREE-PHASE INVARIANTS F R O M  THE PATTERSON FUNCTION 

sequently, any shift-product function [see equation (2)] 
may be expressed as a sum of pairwise products of the 

2 pairs of Gaussian functions belonging to all the n o 
atoms of the crystal. Each product is of the type 

(2zco'2) -3 Z q Z  s 

[ x2 + y2 + z2 (x--d)2 + y2 + z 2 ] 
x exp -- 

202 202 (-A2) 
= (2~0"2) -3 Zq Z s exp ~ 

x exp - a 2 , (15) 

where (again for the sake of simplicity although with 
no loss of generality) one of the atoms is placed at the 
origin of the coordinates while the other is shifted by a 
distance A along the x axis. (Obviously enough, the 
distribution of the shifts between the atom pairs will 
depend both on the actual structure and on the 
Patterson vector u from which the  shift-product 
function is obtained.) The above expression shows that 
each pair of atoms gives rise to a pseudo-atom in the 
shift-product function (we shall denote it as a product  
atom) that is still spherically Gaussian and is centred 
exactly half-way between the two interacting atoms. 
Although the product atoms have different weights, 
they are all represented by the same Gaussian function 
having a square half-peak width equal to one-half that 
of the real atoms. Consequently, it is easy to show from 
equations (14) and (15) that the ideal scattering 
factor Ip'k(H ) of the kth product atoms depends on the 
reciprocal vector H according to the following law: 

I//k(H ) = I]/~. (.)~H) 1/2, (16) 

where a?n is the unitary scattering factor of the real atoms 
(f0 = 1). Although strictly speaking the overall number 
of product atoms is n 2, it is possible to prove that 
each pair of atoms contained in the unit cell (including 
the self-pairs, i.e. one atom and itself) originates only 
eight distinct product atoms, if the unit-cell transla- 
tion symmetry is taken into consideration. In fact, 
let r 1 be the position vector of atom 1 in the real struc- 
ture p(r -- u/2) and r2 = rl + A the position vector 
of atom 2 in the shifted structure p(r + u/2) [see 
equation (2)]. From equation (15) we know that a 
product atom will appear in ptm(r/u) at r o = (r~ + 
r2)/2 = r~ + A/2. But, since atom 2 also appears at 
r2(n,m,p) = r 2 + na + mb + pe  (n ,m,p  any integral 
numbers, a, b, e unit-cell vectors), we shall also have 
product atoms at r = [r 1 + r2(n,m,p)]/2 = r~ + A /2  + 
(na + mb + pc)/2. It is not difficult to see that these 
vectors define only eight distinct positions in the unit 
cell, i.e. those obtained by r o after a shift equal to 

½ x (translation vector) in all directions. Although the 
weights of the eight product atoms may be quite 
different and most will be vanishingly small, strictly 
speaking they can never be zero, in view of equation 
(15). Consequently, if there are N real atoms within 
the unit cell, we shall have v = 8N 2 product atoms in 
the shift-product structure. In view of equations (2) and 
(4), the sum of the scattering factors qPk over the 
product atoms contained in the unit cell is given by 
J-0(u) -- P(u); consequently, it should be clear that the 
exact value of P(u) is bound to be >0. Therefore, the 
assumption that P(u) = 0 for some vectors u, made in 
the preceding section, must be necessarily considered as 
an approximation. Incidentally, since the modulus of 
any Fourier component J - n  of a positive function can 
never exceed the value of 3 -  0, we may write for any u 
(neglecting experimental errors) 

ij-n(u)12 = ,.~2(u ) + j,-2 (u)<_~'-~(u)= p2(u), (17) 

where ~ n ( u )  and J"n(U) are the real and imaginary 
components of.Y-n(U ) [see equation (4)]. 

We shall now proceed to evaluate the statistical 
distribution of ~ n ( u )  and J"n(u) in the general case. 
We shall consider all possible distributions of product 
atoms of given weights within the unit cell. At first, for 
the sake of simplicity, we shall confine our con- 
siderations to the space group P1. In view of the 
above, we may apply the usual statistical distribution 
of the structure factor components of many-atom 
structures (Wilson, 1949): 

w[~.(u)l = [2~(~(u))1 -~ 

x exp {--~9~ 2 ( u ) / [ 2 ( ~  2(u))] }, (18) 

with an analogous expression for W[,Yn(u)] , where 
[see equation (16)] 

(,-~2(U)) = (3"2(U))  = ½ ~ gt2(H, u) 
k--I 

= ~ (~k2(U))k.a?H. (19) 

In the above equations, the argument u has been added 
to ~'k in order to specify that the kth product atom 
corresponds to the product structure with a vector shift 
equal to u. We shall now proceed to evaluate the last 
average in the above equations. 

We will assume that ~,~,(u) may have any value with 
the same a priori  probability, under the constraint 

Y ~'7,(u)-- v(~'7,(u))k = Y 0 ( u ) = / ~ ( u ) ,  (20) 
k=l 

where the bars over .~-0 and P stand for 'exact value 
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of', and the last equality may be easily verified upon 
inspection of equations (2) and (4). This assumption 
may appear arbitrary on first thought, because the 
largest weight of the product atoms is limited by the 
largest weight of the real atoms. However, it will be 
apparent in the following that the low-valued Patterson 
regions are by far the most important in the present 
context. In the corresponding shift-product structures 
light product atoms must predominate [in view of 
equation (20)], their weight distribution having essen- 
tially a random character, reminiscent of the kinetic 
energy distribution among the molecules of a gas. We 
may in fact reduce our problem to that of the kinetic 
energy in a perfect gas (microcanonical ensemble), pro- 
vided we state the correspondence: 

v ,-, total number of molecules; 
~k(U) ,~, kinetic energy of the kth molecule for one de- 

gree of freedom; 
P(u),-, total energy of the system for the same degree 

of freedom. 

It is therefore immediately possible to write the 
probability distribution of the o, I~¢ k S as 

W[~°(u)] = #(u) exp [-fl(u). gr~(u)], (21) 

where fl(u) may be obtained from equations (20) as 
follows: 

oo 
= v : w[:(u)] d /O(u) 

O 

= rift(u)= P(u), (22) 

whence 

f l (u)  = v/P(u). ( 2 2 ' )  

Proceeding analogously to the above, it is now easy to 
solve equation (19), obtaining: 

V 
( = ( J I(U)) = ( = ] .  

= fH.P2(u)/v. (23) 

Although we do not know the exact value p 2 ( u ) ,  w e  

may obtain its most probable value as follows: 

p2(u) ~ (p2(u)) =([P(u)  +AP(u)]2), (24) 

where AP is the random error of the Patterson function, 
and the average is to be performed over all possible 
random errors. Its formal evaluation will be obtained 
under the simplest approximation that P(u) = P(u) + 
AP(u) may assume in principle any positive value with 
the same probability and that [for a given P(u)] the 
observed value P(u) is normally distributed around 

P(u) with a variance tr 2. In fact, in this case we must 
have [putting AP(u) = A]: 

00 

(p2(u)) = f [P(u) + A] 2 exp(-A2/202)dA 
- e  (u) ]_1 

x f exp (-AV2a2) dA (25) 
-p(u) 

Fig. i shows the plot ofy -- (p2(u))/a2 vs x = P(u)/ap; 
it can be seen that y ~_ x 2 + 1 if x < 2.0. The error 
variance 02 originates from several conceptually 
distinct sources, i.e. the random errors in the intensity 
measurements, the scaling error, the series truncation 
and the absorption/extinction effects. Owing to the 
large number of independent terms IF21 cos 2z~H.u 
contributing to P(u) we may reasonably assume that 
a 2 is independent of u. 

An important point should be noted in this con- 
nection. In principle, the inaccuracies affecting equation 
(18) not only involve ( ~ ' 2 ( u ) )  but ~ '2 (u )  as well 
[~'u(u) is the real part of 3-n(u) ,  see equation (4)]. 
However, as will be apparent in the following, the 
smallest values of ( ~ ' 2 ( u ) )  [and therefore of P(u), see 
equation (23)] are especially important in the present 
approach because they appear in the denominator, so 
that explicit consideration of their random error can by 
no means be avoided. Otherwise, the whole theory 
would break down if P(u) happened to be zero or 
negative even at a single point of the unit cell. 

We shall now stipulate a further assumption: The 
product-atom distributions within the unit cell, be- 
longing to two shift-product structures with different 
shifts ul and u2, may be regarded as statistically 
uncorrelated / f  lUE -- Ul[ is sufficiently large. 

No doubt the above assumption is incorrect if the two 
shifts are very close and/or if P(ul) and P(u2) are large. 

] 

\ 

\X 

"1 

-2'0 ) -1'0 ' 

i 

,# /,,, 

i s "  

' lJO ) Z'O J 3JO x" 

Fig. 1. P lo t  o f y  = ( p 2 ( u ) ) / a 2  v s  x = P ( u ) / o  e [see equa t ion  (25)]. 
T h e  func t ion  y = x 2 + 1 is a lso  r epo r t ed  as a da shed  line. 
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In fact, in the former case the two product structures 
are very similar, while in the latter they must bear some 
resemblance to the real structure. However, we believe 
the assumption to be essentially valid because the large 
Patterson values are virtually unimportant in the 
present context, as we shall see, as for the product 
structures with sufficiently different u's and small 
P(u)'s, they are certainly very poorly correlated. Let 
uq be any among the M Patterson vectors evenly dis- 
tributed over the points of a regular lattice covering the 
unit cell (q = 1, 2... ,  M), the smallest lattice interval 
being larger than some suitable value. We have from 
the above [cf. equations (18)-(25)]: 

M 

W[~H(Ul),  ~ H ( U 9  "'" ~'H(UM)] = l-i W[~H(Uq)] 
q = l  

M 

= ( 2 z . ? . / v )  - M n .  1-I <e2fuq)> -1/2 
q = l  

x exp --q=~ 

with an analogous expression for the 3"n(uq). If M is 
large enough the above probability distribution will be 
largest for the correct set of phases {(on}, bearing in 
mind that they determine the values of the ~n (u ) ' s  
for given amplitudes. The largest probability is ob- 
tained when the exponent with reversed sign is lowest, 
i.e. 

M ~ ( u q )  
- minimum. (27) 

It is now easy to convert the above sum into an 
integral extended to the unit-ceU volume, if one con- 
siders that the three-dimensional lattice of the Patterson 
points may be given any translation shift. For each 
lattice translation equation (27) must hold, and it is 
apparent that the best minimizing function is the sum of 
the left-hand sides over all possible translations, i.e. 

f ~ '~(u)  d a (/b2(u)--------- ~ u = minimum. (27') 

V 

This result clearly shows that the real (or the 
imaginary) square components of J -n (u )  [see equation 
(4)] have the largest weights in the minimizing function 
when P(u) is closest to zero, as expected. However, it is 
remarkable that the entire Patterson function contri- 
butes to the result. 

It is now important to point out that the above result 
is not strictly subject to the assumption leading to 
equation (21) (i.e. the gas-kinetic-energy analogue). In 
fact, it is easy to see that the much wider class of 
probability distributions of the form 

1 
W[~u°(u)] - _ .ft~°(u)/P(u)], (28) 

P(u) 

satisfying the normalizing conditions 

oo oo 

f f ( x ) d x =  1; f x . f ( x ) d x =  v-'; 
0 0 

oo 

f x 2 f ( x ) d x  = any finite value, (29) 
0 

leads to equations (23), except for a factor independent 
of/3(u). Then equation (27) is still valid. The above 
assumption may be summarized as follows: The 
relative probability density of having a product atom 
with weight ~°(u) depends only on the ratio ~,°(u)/P(u). 

Furthermore, the result reported in equations (23) 
appears to be supported by a comparison with in- 
equality (17). In fact, disregarding as a first approxi- 
mation the difference between P(u) and P(u), we see 
that the upper limit for either I~n(U)l or IJ"H(U)I is 
proportional to its standard deviation, a result which is 
frequently encountered in comparing the inequality 
with the probability theory of direct methods (see, for 
example, Katie, 1972). 

Let us now take a further step in our assumptions, 
stating that (OH is essentially uncorrelated with the 
phase angle of J-n(U), the more so if P(u) is small. 
Then we may conclude that probability distribution 
(26) also applies to the real and imaginary components 
of J -nexp( - i (on)  [say ~'i~(u) and J 'h(u)] ,  given in 
the first members of equations (9). Then expression 
(27'), after substitution of ~n(Uq) for ~'la(uq), is a 
quadratic form of the three-phase cosine invariants, 
which may be especially suitable for a minimization 
procedure (the same applies to the sine invariants). As 
an example, in the favourable event that all the non- 
zero three-phase invariants (--(OH + (OK + (OH-K) with 
fixed H are linearly independent, the corresponding 
cosines (or sines) may be regarded as independent 
variables. Let us define, from equation (27), 

f ~[~(u) d 3 ~H(Cn,,CH2, ...) = (/b2(U)-------- ~ U= minimum, 
V 

where [cf. equations (9a) and (1 lb)l 

~ h ( u )  = ~ [2 -- 6(H -- 2Ki)] IFK fn_Kil 
t 

(30) 

x cos [2x(H -- 2Ki). u/2]. cn,, (31) 

and 

ca, = cos (--¢H + ¢K, + (On-K). 

If the cn,'s are all independent, we have from the above: 

f S ~ ( u )  ~ h ( u )  dau 0, (32) ~ "  - 2 - -  = 
~c., Oc. ,  <P~(u)>  
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giving an inhomogeneous set of linear equations with as 
many unknowns c.,, which in an explicit form reads: 

Z [ 2 -  6(H--  2Ki)]lFg,F._g,I 
i 

cos [2zc(H -- Ki -- Kj).u] + cos [2~z(K i -- Kj). u] 

(P~(u ) )  

X d 3 U CH t 

= --21FoFnl 

f cos[Zzc(H -- Kj).u] + cos (ZzcKj. u) d 3 
x (p2(u)) u, (33) 

v 
after use of the identity cos ~t cos fl = ½[cos (ct + fl) + 
cos  ( -  - b)]. 

It is interesting to analyse the structure of the above 
system in some detail. Let us first define 

1 
~ ( U ) -  (/~2(U)------~ , (34) 

which is a positive function with the same symmetry as 
the Patterson function itself. The general Fourier com- 
ponent of q~(u) may be defined as 

Qn = f ~(u) cos (2zcH. u) d 3 Ilb (35) 
v 

while the corresponding component of P(u) is IFH 12. 
Since q~(u) is large when P(u) is small, and vice versa, 
it is not difficult to see that Qn is probably large and 
negative for large I Fnl 2. In fact, as may be seen from 
the above equation written in terms of IF.12, P(u) is 
larger on average when cos(2nH.u) is positive than 
when it is negative; the reverse applies to q~(u), so that 
the probable value of Qn is negative. [It should be 
clearly pointed out that this conclusion is only statis- 
tically valid; in fact, it may well happen that both the 
largest peaks and the deepest minima of P(u) are con- 
tained in regions with cos (2nil.u) positive, with the 
consequence that Q. is positive.] It is now convenient 
to write equation (33) in terms of Q., giving (for thejth 
equation) 

~'. [2 - ~(H -- 2Ki)] iFK,F._K,I (Qn_K,_K, 
i 

+ Q~,_K).cH, = --21FoFnl (Q.-K, + QK). (36) 

Let us suppose that IFHI, IFKI and IFH_K I are all 
large, so that we have a 'strong' triple LF_a~K Fn-K L. 
In equation (36) any product of the type IF1F21 (JQ + ~')  
may be large for either of the following reasons: (i) 
IFIF21 is large; (ii) either Q or Q' is large. Since F 0 is 
usually much larger than any other structure factor, 

requirement (i) is best satisfied by the term on the right- 
hand side, which is probably positive for what is said 
above. As for requirement (ii), it is best satisfied by 
taking K i = Kj on the left-hand side, which produces 
the factor (Qn-EKj + Q0); in fact, we may reasonably 
assume Q0 to be much larger than most Q.'s. Since 
Q0 does not appear in any other element, the equation 
is (probably) dominated by the term containing 
CHj = COS ( ( f f -H q- (ffK/ d- (PH-Kj) on the left-hand side, 
with a positive coefficient, and by the (probably 
positive) right-hand side itself. The conclusion that the 
cosine invariant is probably positive under the above 
hypotheses is immediate. It seems a promising feature 
of the present approach that this result, more accurately 
expressed as 

¢-n + ¢~ + en-K g0,  for IF_nFKFH_KI large, (37) 

in the classical probability theory, can be qualitatively 
derived in this completely different logical context. But 
perhaps the most important implication of the above 
considerations is the realization that the diagonal 
elements of the coefficient matrix are dominant, if 
IFK F._K,I are all large enough. Since the existence of 

J , . . . . 
large dmgonal elements is usually taken as an mdlcatmn 
of a well conditioned system of equations, we may 
expect that the solution of our problem should not be 
intrinsically difficult to obtain, as long as the small 
terms IFKjFH_Kjl may be omitted from ~ 'h(u)  [see 
equation (31)] without destroying the validity of 
equation (30). 

The corresponding procedure may be followed for 
snj, and it is easy to check that the overall result is 
formally identical to equations (10). 

If the phase invariants are not independent, the 
minimization of the ~uH function [equation (30)] must 
be performed differently. As an example, a step-wise 
procedure analogous to that utilized in the least-squares 
refinement of the atomic coordinates may be followed, 
starting from a rough set of phases obtained from 
the zero-valued Patterson vectors. However, it is 
possible to show that for the triclinic space groups the 
linear independence is always automatically guaranteed. 

Although the above least-squares approach was 
followed with specific reference to the P1 case, it is not 
difficult to show that the essential results shown in 
equations (27') and (30) (or their analogues with the 
sine invariants) are valid for any space group. In fact, 
although the existence of particular space-group 
symmetries may change by a factor the averages 
( , ~ ( u ) )  and (,y2H(U)) [see equations (19)],this factor 
is obviously constant for all u's, so that the minimizing 
function turns out to be the same. 

As a final comment, we wish to point out that the 
above least-squares approach seems to exploit in quite 
a complete way the physical information contained in 
the observed amplitudes, to derive the corresponding 
phases. The equal-atoms assumption is not strictly re- 
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quired. Needless to say, practical testing of both 
methods indicated in the present paper is needed. In 
our laboratory, a computing program for the least- 
squares approach to triclinic space groups is under 
preparation. 
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Abstract 

An extended version of the multi-solution method has 
been devised by introducing a Monte Carlo technique. 
This Monte Carlo direct method differs from the 
ordinary multi-solution procedure in two respects: (1) 
The starting set usually consists of as many as 10-50 
phases; (2) Tentative phase values assigned to the 
members of the starting set are derived from suc- 
cessively generated random numbers. The application 
of the new method to several unknown structures has 
shown that it can be used as an effective means of 
phase determination. 

Introduction 

The direct methods of phase determination have now 
made it possible to determine unknown structures of 
complicated organic compounds without converting 
them into heavy-atom derivatives. These excellent 
results may give one a false impression that the phase 
problem would have been completely solved. However, 
especially in noncentrosymmetric cases, there seem to 
be a good many structures whose analyses end in 
failure. It has been pointed out that the probable cause 
of such a failure is that some phase relationships 
produce grave errors early in the phase determination 
(Karle, Karle & Estlin, 1967; Karle, Gibson & Karle, 
1969).* If this is the case, it is very hard to overcome 
the difficulty, because it is practically impossible to find 

* It has recently been reported that there exist structures which 
the tangent formula itself is inadequate to solve (Lessinger, 1976). 
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the serious trouble-makers among the many phase 
relationships at the early stage of the analysis. 
Although a promising way of doing this is to add some 
additional phases to the starting set, it causes a great 
increase in the number of phase sets to be treated. A 
method which has been developed to surmount this new 
obstacle is the magic-integer technique (White & 
Woolfson, 1975; Declercq, Germain & Woolfson, 
1975). 

When applying the multi-solution method (Germain 
& Woolfson, 1968), one sometimes finds that two or 
more phase sets appearing in succession lead to the 
correct solution. In this case, generally speaking, one 
will be able to reach the correct solution earlier by 
making the phase sets appear in completely random 
order rather than in systematic order, because the dis- 
persion of the successive, essentially correct phase sets 
remarkably decreases the average number of trials 
necessary for finding the correct solution. The larger 
the starting set, the more frequently such a case must 
be met. Accordingly, the introduction of a Monte Carlo 
technique seems to afford a new method for solving the 
difficulty in phase determination. 

Although the use of a Monte Carlo method for X- 
ray structure analysis was proposed by Vand, Niggli & 
Pepinsky (1960), the idea now appears to have been 
given up. One of the main causes of the failure is 
probably that the optimal-shift method (Niggli, Vand & 
Pepinsky, 1960) cannot refine random structures 
sufficiently well. On the other hand, the tangent formula 
(Karle & Hauptman, 1956) often shows remarkable 
ability in the refinement of phases. This suggests that it 
may be more promising to use generated random 
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